
Chomsky Normal Form



The Pumping Lemma for Regular Languages came from properties of 
the automaton associated with a regular language.  The corresponding 
lemma for context-free languages comes from properties of the 
associated grammar.  To get at those properties we need to write the 
grammar in a specific way.



A grammar is said to be in Chomsky Normal Form (CNF) if all of its 
grammar rules follow one of the two patterns:

• X => YZ  (exactly 2 non-terminals on the right side)
• X => a (exactly 1 terminal on the right side)

We will show that every context-free grammar can be converted into 
a CNF grammar that defines the same language. 



Step 1.  We say nonterminal X is generating if there is a terminal 

string w with X ֜
∗

w.  We say X is reachable if there is a derivation 
from the start symbol that contains X:

S ֜
∗

aXb where a,  b are in (S+N)*

Note that if a symbol is not generating or not reachable then we can 
remove it from the grammar along with all rules that contain it.



Algorithm: To mark all generating variables
a) Mark all symbols that have a rule where the right hand side 

contains only terminal symbols.
b) Mark all symbols X for which there is a rule X => a where every 

symbol in a is either marked or a terminal symbols.
repeat step b until nothing more can be marked.

An easy induction shows that symbol X is marked if and only if it is 
generating.



For example, consider the grammar
S => AB | a
A => C
C => b
B => Eb

Symbols S, A, and C are marked; B and E are not.



Algorithm: To mark the reachable symbols:
a) Mark the start symbol S
b) If X is marked then for each rule X => a mark all of the 

nonterminal symbols in a.

Again, an easy induction shows that a symbol is marked if and only if it 
is reachable.



Example: 
S => AB | a
A => BC | a
B => b
C => BA
D => b

S,A,B,C are all reachable; D is not.



The order in which we remove rules and symbols from a grammar 
matters.

Example:
S => AB | a
A => b

Here all variables are reachable  but B is not generating.
If we remove unreachable variables then non-generating ones we get

S => a
A => b

If we remove non-generating variables then unreachable ones we get
S => a



Theorem: Let G be a context-free grammar that derives a non-empty 
language.

Step 1: First eliminate all symbols that aren't generating and all 
rules that use them.

Step 2: Then eliminate all symbols that aren't reachable in the 
grammar produced by Step 1, and all rules that use them

Call the resulting grammar G'. Then the language derived from G' is 
the same as the language derived from G and all of the non-
terminal symbols in G' are both reachable and generating.

Proof: One direction is easy: G' is a subset of G, so everything that 
can be derived from G' can also be derived from G.



So suppose w can be derived from G.  This means there is a derivation 

S ֜
∗

w. Every variable used in this derivation is reachable (since it is 
derived from S) and generating (since it derives a terminal string).  So 
w can also be derived from S in G'.  This shows the languages of G and 
G' are the same.

Since we do Step 2 last it is obvious that all of the symbols in G' are 
reachable. We need to show that they are still generating.

Suppose X is a symbol in G'. If  X wasn't removed in Step 1 then there 

are rules in G where X ֜
∗

a for some terminal string a.



If X wasn't removed in Step 2 then X must be reachable in G':

S ֜
∗

X ֜
∗

a. 

But then every symbol in the derivation X ֜
∗

a is also both generating 
and reachable, so all of these symbols and the rules used in this 
derivation must remain in G'.  So X is generating in G'.



Chomsky Normal Form doesn't allow rules A => e.

Definition: We say symbol A is nullable if A ֜
∗

e

Here is a marking algorithm to mark the nullable symbols:
a) Mark A if there is a rule A => e.
b) Mark B if there is a rule B => A1..Ak and all of the symbols on 

the right hand side are marked.
Repeat (b) until nothing else can be marked.

It is easy to see that this does mark the nullable symbols and only 
the nullable symbols.



Theorem: Let G be a grammar.
1. Eliminate all rules of the form A => e
2. If there is a rule X => aAb where A is the only nullable symbol 

on the right hand side, then replace this rule by 
X => aAb | ab

3. If a rule has m nullable variables on its right hand side, replace 
it with 2m rules having the nullable variables present or absent 
in all possible combinations.

Let G' be the grammar this produces. Then G' has no nullable 
symbols and generates the same language as G except for the 
empty string.  Note that G' might have variables that are no longer 
generating.



Since we have eliminated all rules A => e there is no way for G' to 
derive e, so G' has no nullable symbols.

If G' derives string w, then any step in the derivation using a rule 
modified in (2) or (3) could be replaced by the original rule, producing 
a derivation of w in G.  So any string that can be derived in G' can be 
derived in G'.

We will show by induction that any string w other than e that can be 
derived in G can be derived in G'.



The induction is on the length of the derivation in G. If this is 1 the 
derivation must be A => w, which does not use anything modified in 
G'.

Suppose this is true for all derivations in G of length <= n steps and 
we have a derivation of w taking n+1 steps.  The first step of this 
must be of the form  A => X1..Xk.  Since this derivation eventually 
produces w, each Xi must derive a string wi in n or fewer steps. If wi=e

then Xi is nullable and there is an equivalent rule in G' without Xi.  If 
wi is not empty the inductive hypothesis says Xi can derive wi in G'.  
Either way, w can be derived from A in G'.



Chomsky Normal Form doesn't allow rules of the form A => B, 
where B  is a single symbol.  We call such a rule a unit production.  

If A ֜
∗

C using only unit productions  (as in A => B and B => C) we 
call (A, C) a unit pair.

Here is an algorithm to mark the unit pairs of a grammar:
Algorithm: 

1) Mark (A,A) for every nonterminal symbol A.
2) If (A, B) is marked and B=>C is a unit production then mark 

(A,C)
Repeat (2) until nothing else can be marked.



Here is an algorithm for removing the unit productions from a 
grammar G, producing a new grammar G'

1) Start G' with no grammar rules.
2) For each unit pair (A,B) in G and each non-unit rule B=>a in G, 

add A=>a as a rule to G'.
Note that since we defined (A,A) as a unit pair, rule (2) adds all 
non-unit rules of G to G'



Example:
A => B
B => 0C | 1D
C => 0
D => 1

This is equivalent to
A => 0C | 1D
C => 0
D => 1

We eliminate B because it is no longer reachable.



Theorem: If G' is the grammar produced from G by this algorithm 
that removes unit pairs then G' and G derive the same language.
Proof:  It is obvious that every derivation in G' is a shortcut for one 
in G, so every string derived in G' can be derived in G.  Now suppose 
that w is derived in G. Consider the left-most derivation of w.  If at 
some step this uses a unit production A=>B then at the next step B 
will be the leftmost nonterminal symbol so it will be expanded with 
a rule B=>a.  We could get to this same point in G' by using the rule 
A=>a.  So every string derived in G can also be derived in G'.



Recall that CNF allows only rules of the form A=>BC or A=>a

Algorithm: To convert a grammar into Chomsky Normal Form:
1) Eliminate any e-rules
2) Eliminate any unit rules
3) Eliminate any rules that are not generating
4) Eliminate any rules that are not reachable
5) For each rule A => X1..Xn where n>1, if some Xi is a terminal 

symbol then add a new nonterminal symbol Ai to the grammar 
and the rule Ai=>Xi.  Replace the original rule with 
A=>X1..Xi-1AiXi+1..Xn.  So we can assume the Xi are all nonterminals

6) (over)



6) For each rule A => X1..Xn where n>2 make a new set of rules
A => X1B1

B1 => X2B2

...
Bn-3 => Xn-2Bn-2

Bn-2 =>Xn-1Xn-2

where the Bi are new nonterminal symbols
Call the new grammar G'.  It should be obvious from everything 
we have done that L(G')=L(G)-{e} and G' is in Chomsky Normal 
Form.

So every context-free language has a CNF grammar that derives all of 
the language except {e}



Example:  
E => E+T | T
T => T*F | F
F => (E) | digit | F digit

--------------------------------------------
Step 1: No e-rules
Step 2: Unit rules

E => E+T | T*F | (E) | digit | F digit
T => T*F | (E) | digit | F digit
F => (E) | digit | F digit

Steps 3, 4: All symbols are reachable and generating



Step 5:
E => EPT | TXF | LER | digit | FD
T => TXF | LER | digit | FD
F => LER | digit | FD
P => +
X => *
L => (
R => )
D => digit

Step 6: over 



Step 6:
E => E E1 | T T1 | L L1 | digit | FD
E1 => P T 
T1 => X F
L1 => E R
T => T T1 | L L1 | digit | FD
F => L L1 | digit | FD
P => +
X => *
L => (
R => )
D => digit

This grammar is in CNF.


