
Chomsky Normal Form

The Pumping Lemma for Regular Languages came from properties of
the automaton associated with a regular language. The corresponding
lemma for context-free languages comes from properties of the
associated grammar. To get at those properties we need to write the
grammar in a specific way.

A grammar is said to be in Chomsky Normal Form (CNF) if all of its
grammar rules follow one of the two patterns:

• X => YZ (exactly 2 non-terminals on the right side)
• X => a (exactly 1 terminal on the right side)

We will show that every context-free grammar can be converted into
a CNF grammar that defines the same language.

Step 1. We say nonterminal X is generating if there is a terminal

string w with X ֜
∗

w. We say X is reachable if there is a derivation
from the start symbol that contains X:

S ֜
∗

aXb where a, b are in (S+N)*

Note that if a symbol is not generating or not reachable then we can
remove it from the grammar along with all rules that contain it.

Algorithm: To mark all generating variables
a) Mark all symbols that have a rule where the right hand side

contains only terminal symbols.
b) Mark all symbols X for which there is a rule X => a where every

symbol in a is either marked or a terminal symbols.
repeat step b until nothing more can be marked.

An easy induction shows that symbol X is marked if and only if it is
generating.

For example, consider the grammar
S => AB | a
A => C
C => b
B => Eb

Symbols S, A, and C are marked; B and E are not.

Algorithm: To mark the reachable symbols:
a) Mark the start symbol S
b) If X is marked then for each rule X => a mark all of the

nonterminal symbols in a.

Again, an easy induction shows that a symbol is marked if and only if it
is reachable.

Example:
S => AB | a
A => BC | a
B => b
C => BA
D => b

S,A,B,C are all reachable; D is not.

The order in which we remove rules and symbols from a grammar
matters.

Example:
S => AB | a
A => b

Here all variables are reachable but B is not generating.
If we remove unreachable variables then non-generating ones we get

S => a
A => b

If we remove non-generating variables then unreachable ones we get
S => a

Theorem: Let G be a context-free grammar that derives a non-empty
language.

Step 1: First eliminate all symbols that aren't generating and all
rules that use them.

Step 2: Then eliminate all symbols that aren't reachable in the
grammar produced by Step 1, and all rules that use them

Call the resulting grammar G'. Then the language derived from G' is
the same as the language derived from G and all of the non-
terminal symbols in G' are both reachable and generating.

Proof: One direction is easy: G' is a subset of G, so everything that
can be derived from G' can also be derived from G.

So suppose w can be derived from G. This means there is a derivation

S ֜
∗

w. Every variable used in this derivation is reachable (since it is
derived from S) and generating (since it derives a terminal string). So
w can also be derived from S in G'. This shows the languages of G and
G' are the same.

Since we do Step 2 last it is obvious that all of the symbols in G' are
reachable. We need to show that they are still generating.

Suppose X is a symbol in G'. If X wasn't removed in Step 1 then there

are rules in G where X ֜
∗

a for some terminal string a.

If X wasn't removed in Step 2 then X must be reachable in G':

S ֜
∗

X ֜
∗

a.

But then every symbol in the derivation X ֜
∗

a is also both generating
and reachable, so all of these symbols and the rules used in this
derivation must remain in G'. So X is generating in G'.

Chomsky Normal Form doesn't allow rules A => e.

Definition: We say symbol A is nullable if A ֜
∗

e

Here is a marking algorithm to mark the nullable symbols:
a) Mark A if there is a rule A => e.
b) Mark B if there is a rule B => A1..Ak and all of the symbols on

the right hand side are marked.
Repeat (b) until nothing else can be marked.

It is easy to see that this does mark the nullable symbols and only
the nullable symbols.

Theorem: Let G be a grammar.
1. Eliminate all rules of the form A => e
2. If there is a rule X => aAb where A is the only nullable symbol

on the right hand side, then replace this rule by
X => aAb | ab

3. If a rule has m nullable variables on its right hand side, replace
it with 2m rules having the nullable variables present or absent
in all possible combinations.

Let G' be the grammar this produces. Then G' has no nullable
symbols and generates the same language as G except for the
empty string. Note that G' might have variables that are no longer
generating.

Since we have eliminated all rules A => e there is no way for G' to
derive e, so G' has no nullable symbols.

If G' derives string w, then any step in the derivation using a rule
modified in (2) or (3) could be replaced by the original rule, producing
a derivation of w in G. So any string that can be derived in G' can be
derived in G'.

We will show by induction that any string w other than e that can be
derived in G can be derived in G'.

The induction is on the length of the derivation in G. If this is 1 the
derivation must be A => w, which does not use anything modified in
G'.

Suppose this is true for all derivations in G of length <= n steps and
we have a derivation of w taking n+1 steps. The first step of this
must be of the form A => X1..Xk. Since this derivation eventually
produces w, each Xi must derive a string wi in n or fewer steps. If wi=e

then Xi is nullable and there is an equivalent rule in G' without Xi. If
wi is not empty the inductive hypothesis says Xi can derive wi in G'.
Either way, w can be derived from A in G'.

Chomsky Normal Form doesn't allow rules of the form A => B,
where B is a single symbol. We call such a rule a unit production.

If A ֜
∗

C using only unit productions (as in A => B and B => C) we
call (A, C) a unit pair.

Here is an algorithm to mark the unit pairs of a grammar:
Algorithm:

1) Mark (A,A) for every nonterminal symbol A.
2) If (A, B) is marked and B=>C is a unit production then mark

(A,C)
Repeat (2) until nothing else can be marked.

Here is an algorithm for removing the unit productions from a
grammar G, producing a new grammar G'

1) Start G' with no grammar rules.
2) For each unit pair (A,B) in G and each non-unit rule B=>a in G,

add A=>a as a rule to G'.
Note that since we defined (A,A) as a unit pair, rule (2) adds all
non-unit rules of G to G'

Example:
A => B
B => 0C | 1D
C => 0
D => 1

This is equivalent to
A => 0C | 1D
C => 0
D => 1

We eliminate B because it is no longer reachable.

Theorem: If G' is the grammar produced from G by this algorithm
that removes unit pairs then G' and G derive the same language.
Proof: It is obvious that every derivation in G' is a shortcut for one
in G, so every string derived in G' can be derived in G. Now suppose
that w is derived in G. Consider the left-most derivation of w. If at
some step this uses a unit production A=>B then at the next step B
will be the leftmost nonterminal symbol so it will be expanded with
a rule B=>a. We could get to this same point in G' by using the rule
A=>a. So every string derived in G can also be derived in G'.

Recall that CNF allows only rules of the form A=>BC or A=>a

Algorithm: To convert a grammar into Chomsky Normal Form:
1) Eliminate any e-rules
2) Eliminate any unit rules
3) Eliminate any rules that are not generating
4) Eliminate any rules that are not reachable
5) For each rule A => X1..Xn where n>1, if some Xi is a terminal

symbol then add a new nonterminal symbol Ai to the grammar
and the rule Ai=>Xi. Replace the original rule with
A=>X1..Xi-1AiXi+1..Xn. So we can assume the Xi are all nonterminals

6) (over)

6) For each rule A => X1..Xn where n>2 make a new set of rules
A => X1B1

B1 => X2B2

...
Bn-3 => Xn-2Bn-2

Bn-2 =>Xn-1Xn-2

where the Bi are new nonterminal symbols
Call the new grammar G'. It should be obvious from everything
we have done that L(G')=L(G)-{e} and G' is in Chomsky Normal
Form.

So every context-free language has a CNF grammar that derives all of
the language except {e}

Example:
E => E+T | T
T => T*F | F
F => (E) | digit | F digit

--
Step 1: No e-rules
Step 2: Unit rules

E => E+T | T*F | (E) | digit | F digit
T => T*F | (E) | digit | F digit
F => (E) | digit | F digit

Steps 3, 4: All symbols are reachable and generating

Step 5:
E => EPT | TXF | LER | digit | FD
T => TXF | LER | digit | FD
F => LER | digit | FD
P => +
X => *
L => (
R =>)
D => digit

Step 6: over

Step 6:
E => E E1 | T T1 | L L1 | digit | FD
E1 => P T
T1 => X F
L1 => E R
T => T T1 | L L1 | digit | FD
F => L L1 | digit | FD
P => +
X => *
L => (
R =>)
D => digit

This grammar is in CNF.

